Por @Alvy — 25 de Abril de 2013

Teorema-De-Pick-1

Qué simpático y extraño a la vez me ha parecido el teorema de Pick que descubrí en Futility Closet. Se aplica a polígonos cuyos vértices tienen coordenadas enteras; en otras palabras, formas cerradas que puedes dibujar pasado por los «cruces» de una retícula de cuadrados como las de un cuaderno.

Resulta que si cuentas los puntos hay están en el interior (i) y en los que hay en intersecciones de los bordes (b), el área de la figura es exactamente A = i + (b/2) - 1. En este ejemplo hay 40 interiores y 12 en el borde, por tanto el área es A = 40 + 12/2 - 1 = 45.

Teorema-De-Pick-2

A veces el resultado no es un número entero, como en este otro ejemplo procedente de la Wikipedia, donde el área es 53,5. Cuando se desarrolla la demostración todo encaja y tiene su lógica, pero a simple vista no es trivial descomponer los polígonos en triángulos ni calcular su superficie; como atajo es sorprendentemente genial.

Compartir en Flipboard Compartir en Facebook Tuitear

PUBLICIDAD

Microsiervos Selección


Pi: the first million digits and visualization with Python (Japanese Edition)

EUR 2,99 (Reseña en Microsiervos)

Comprar


Leonardo da Vinci: La biografía

EUR 12,34 (Reseña en Microsiervos)

Comprar


The Human Face of Big Data

EUR 48,11

Comprar


Amazon Associates

Los productos aquí enlazados están a la venta en Amazon. Incluyen un código de Afiliado Amazon Associates que nos cede un pequeño porcentaje de las ventas. Los productos están seleccionados por los autores del blog, pero ni Amazon ni los editores de los libros o fabricantes de los productos participan en dicha selección.

Más libros y productos en:

Microsiervos Selección