Por @Alvy

En este vídeo de Veritasium, Derek y Casper explican las matemáticas subyacentes en las cadenas de Márkov, cuyas propiedades tienen un sinfín de aplicaciones incluyendo:

  • Simulación de comportamiento de neutrones en una bomba nuclear (como en el Proyecto Manhattan).
  • Cálculo del valor crítico k las en reacciones nucleares para saber si una reacción es autosostenible.
  • Compresión y transmisión de información, según la teoría de la información de Shannon.
  • Modelado de la propagación de enfermedades (epidemiología).
  • Medición de independencia o dependencia en estadísticas sociales, como matrimonios o criminalidad.
  • Método de Monte Carlo para resolver problemas con millones de posibilidades imposibles de calcular analíticamente.
  • Diseño de reactores nucleares usando simulaciones estadísticas.
  • El algoritmo PageRank de Google para ordenar páginas web por relevancia y calidad.
  • Predicción del tiempo atmosférico considerando dependencias meteorológicas.
  • La aleatoriedad en las barajas de naipes, incluyendo cuánto hay que barajar para obtener una baraja verdaderamente aleatoria (con 7 mezclas basta).
  • Estudios de retroalimentación en sistemas complejos, como el cambio climático.
  • Estimación estadística de probabilidades complejas a partir de juegos como el solitario.

Y, como no podía ser de otra forma,

  • Modelado del lenguaje natural, como la predicción de textos en Gmail y smartphones, en modelos de lenguaje aplicados para la IA.

Con nombres como Bernoulli, Ulam, Oppenheimer, von Neumann, Shannon, Yang y Filo, Brin y Page, o Masayoshi Son, hay que verlo para entender cómo todo encaja en una historia perfecta desde su concepción, allá por 1906.

Y eso que todo vino de un pique en una discusión con su colega de profesión Pavel Nekrasov. Ha dado para mucho.

Relacionado:

Compartir en Flipboard Publicar