Por @Alvy — 6 de Marzo de 2016

Sombras de otras dimensiones

Tal y como nos recuerdan en esta página con una animación GIF de un hipercubo 4D esta imagen de Paul Micarelli resulta muy interesante como forma de entender cómo «funcionan» otras dimensiones por analogía con las «sombras que proyectan»:

  • La sombra de una línea de 1D es un punto de 0D
  • La sombra de un cuadrado de 2D es una línea de 1D
  • La sombra de un cubo de 3D es un cuadrado de 2D
  • La sombra de un hipercubo de 4D son los cubos de 3D

Es un poco visualizar cómo pueden ser las «caras cúbicas» de la «sombra» de un hipercubo –dado que estamos acostumbrados únicamente a «caras planas»– pero basta imaginarlo como una «cruz estilo Dalí» en 3D e intentar comprender que eso se corresponde con la sombra de las caras proyectadas por el hipercubo.

Compartir en Flipboard  Compartir en Facebook  Tuitear

Microsiervos Selección


El hombre anumérico

EUR 15,20

Comprar


La proporción áurea: La historia de phi, el número más sorprendente del mundo

EUR 6,64 (Reseña en Microsiervos)

Comprar


Amazon Associates

Los productos aquí enlazados están a la venta en Amazon. Incluyen un código de Afiliado Amazon Associates que nos cede un pequeño porcentaje de las ventas. Los productos están seleccionados por los autores del blog, pero ni Amazon ni los editores de los libros o fabricantes de los productos participan en dicha selección.

Más libros y productos en:

Microsiervos Selección