Por @Alvy — 14 de Marzo de 2013

π = 3,1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989

Como cada 14 de marzo (3/14 en anglosajón) hoy es el día de pi. Uno de nuestros números favoritos, si no el que más: redondo, abarcador de todos los demás (o casi), encarnación de la aleatoriedad (cuasi)perfecta y constante matemática idolatrada por muchos aficionados a las matemáticas – como demostró sin lugar a dudas una encuesta totalmente carente de validez.

Las actividades tradicionales de hoy incluyen:

Este año el matemático y divulgador Marcus du Sautoy sugiere algunas actividades para la celebración – que él mismo llevará a cabo con toda pompa en vivo y en directo y se podrá seguir a través de Internet. Una de ellas es ideal para hacer en casa.

Canicas para calcular el área de un círculo / Oxford ConnectUnas cuantas canicas, todas ellas del mismo tamaño, son suficientes para calcular el valor de π con cierta precisión. Lo que hay que hacer es disponerlas en círculo, tan apiñadas como sea posible – téngase en cuenta que el resultado será siempre aproximado. Se puede utilizar cualquier objeto circular a modo de «molde» o dibujarlo sobre un papel. Una vez completada la tarea se cuentan dos valores: el número de canicas que atraviesan de un lado a otro el círculo pasando por el centro (el diámetro, d) y el número de canicas totales (a).

El área del círculo es πr², de modo que la fórmula para calcular π sería a/((d/2)²) = π. Se puede anotar el valor y probar con otros tamaños, de este modo se puede ver cómo mejora el cálculo aproximándose a 3,14159… cuantas más canicas se usan e incluso que no varía mucho si las canicas no son todas perfectamente iguales o redondas. Dicen que en la antiguedad se usaba este método a falta de otro mejor para calcular el valor de la redonda constante.

Compartir en Flipboard Compartir en Facebook Tuitear

PUBLICIDAD




PUBLICIDAD


Microsiervos Selección


El libro de las matemáticas: de Pitágoras a la 57ª dimensión

EUR 18,95 (Reseña en Microsiervos)

Comprar


How Not to be Wrong: The Hidden Maths of Everyday Life

EUR 12,69

Comprar


Amazon Associates

Los productos aquí enlazados están a la venta en Amazon. Incluyen un código de Afiliado Amazon Associates que nos cede un pequeño porcentaje de las ventas. Los productos están seleccionados por los autores del blog, pero ni Amazon ni los editores de los libros o fabricantes de los productos participan en dicha selección.

Más libros y productos en:

Microsiervos Selección