Por @Wicho

Dos niños a contraluz frente a una hoguera
San Juan Coruña 2011 - Cuenta conmigo CC por Dani Vázquez

Hoy lo oiremos y lo leeremos repetido montones de veces, tanto a amigos, familiares, y conocidos como en los medios de comunicación, como por ejemplo aquí, y pasa año tras año… Pero por mucho que se diga, la noche de San Juan no es la más corta del año.

Y en cualquier caso tendríamos que especificar que hablamos de la noche más corta en el hemisferio norte. En el hemisferio sur sería la más larga. Pero tampoco.

La noche más corta del año se corresponde con la de aquel día en la que el Sol pasa más tiempo sobre el horizonte, lo que sucede en junio en el hemisferio norte y en diciembre en el hemisferio sur. Es el día del solsticio de verano, que por convención marca el principio de esta estación y que si en el hemisferio norte ocurre en junio en el hemisferio sur lo hace en diciembre.

El inicio del verano, en el hemisferio norte, puede darse, a lo sumo, en tres fechas distintas del calendario vigente, del 20 al 22 de junio. A lo largo del siglo XXI el verano –insisto, en el hemisferio norte– se iniciará en los días 20 o 21 de junio según fecha oficial española, siendo el inicio más tempranero del siglo el del año 2096, pues ocurrirá a las 8:34 del 20 de junio, y el inicio más tardío el de 2003, pues el verano entró a las 21:12 del 21 de aquel año.

Las variaciones de un año a otro son debidas al modo en que encaja la secuencia de años según el calendario gregoriano con la duración de cada órbita de la Tierra alrededor del Sol, el año trópico.

El calendario juliano, al que sustituyó al gregoriano, consideraba que el año trópico estaba constituido por 365,25 días, cuando su duración real es de 365,242189, lo que suponía un desfase de un poco más 11 de minutos al año, de tal forma que para 1582, cuando se instituyó el calendario gregoriano, el desfase era ya tal que el solsticio de verano de aquel año cayó en el 12 de junio.

El calendario gregoriano, además de recuperar los 10 días perdidos, ajusta la duración del año a 365,2425 días y también cambió la norma de los años bisiestos, que en lugar de cada cuatro años como en el juliano hace que se exceptúen los años múltiplos de 100, a excepción de los años múltiplos de 400, que sí son bisiestos.

Así que por eso baila un poco la fecha en la que cae el principio del verano y la noche más corta del año… Pero desde que está en uso el calendario gregoriano nunca será la noche de San Juan, por mucho que nos empeñemos en decirlo.

Lo que sí es cierto es que al principio de nuestra era, antes de que se aplicara la corrección del calendario gregoriano, el solsticio de verano sí podía caer en el 23, 24, o incluso el 25 de junio, de ahí el origen de la confusión.

Por cierto que es lógico pensar que el día más largo del año es también el día en que el Sol sale más pronto y se pone más tarde, pero en realidad no es así.

Nuestros relojes están ajustados a un día solar medio, pero al ser la órbita de la Tierra elíptica su velocidad de desplazamiento por ella va cambiando a lo largo del año, lo que combinado con la inclinación de su eje de rotación hace que haya un cierto desfase entre las horas que marca el reloj y la posición del Sol, desfase que se puede calcular con la ecuación de tiempo.

Compartir en Flipboard Publicar
PUBLICIDAD


Por @Wicho

La descripción
La corona solar vista por el instrumento ASPIICS de la misión Proba-3 el pasado 25 de mayo – ESA/Proba-3/ASPIICS/WOW

¿Sabes cuando estiras un brazo para tapar el Sol con la mano y así intentar ver algo en el cielo que está cerca de él? Pues, salvando todas las distancias, es lo que acaban de hacer las naves de la misión Proba-3 de la Agencia Espacial Europea (ESA) para crear su primer eclipse solar artificial y así conseguir imágenes de la corona solar.

Lanzada el cinco de diciembre de 2025 por un PSLV-XL desde el Centro Espacial Satish Dhawan en Sriharikota, India, la misión está formada por dos naves que vuelan de forma independiente pero coordinada.

Son el Ocultador –tu mano– y el Coronógrafo –tus ojos–, que aunque fueron lanzados juntos pronto se separaron para que desde el control de la misión fueran viendo su capacidad de maniobra y de mantener una posición relativa con precisión.

De hecho para obtener la imagen de arriba el Ocultador se colocó a 150 metros de distancia del Coronógrafo y mantuvo su posición con una precisión de hasta un milímetro durante varias horas. Eso hizo que su disco de 1,4 metros de diámetro se proyectara como una sombra de ocho centímetros sobre la apertura de cinco centímetros del instrumento ASPIICS.

La descripción
Impresión artística de las dos naves de la misión en órbita alrededor de la Tierra y de la sombra que proyecta el Ocultador sobre el Coronógrafo – ESA

Lo que hacen las dos naves de la misión es lo que hacemos en la Tierra durante un eclipse total de Sol para obtener imágenes de la corona solar gracias a la Luna. Pero si bien los eclipses se dan, como mucho dos veces en un año, aunque lo más habitual es que sea uno al año, Proba-3 puede crearlos a voluntad.

Además, si un eclipse natural dura apenas unos minutos desde cada punto de observación, Proba-3 puede hacerlo durar hasta unas seis horas durante cada una de sus órbitas, que duran algo menos de 20 horas.

Esto es porque aprovecha la parte más alejada de la Tierra de su órbita altamente elíptica de 600×60.530 kilómetros para volar en formación, ya que la influencia de la gravedad de nuestro planeta es menor en esos momentos.

Por el contrario, cuando se van a acercando a la Tierra adoptan posiciones relativas que aseguran que las dos naves no vayan a chocar. Es también durante esa fase cuando vuelven a adquirir datos de los sistemas de posicionamiento para determinar sus posiciones de cara a la siguiente órbita.

Por ahora la misión aún está en la fase de puesta en marcha, así que desde el control de la misión observan atentamente el desarrollo de las maniobras por si hubiera que intervenir. Aunque la idea es que el el futuro la misión funcione de forma totalmente autónoma.

Al no estar metida dentro de la atmósfera la misión puede obtener unas imágenes de la corona del Sol bastante más precisas y detalladas que las que obtenemos desde tierra. La idea es que Proba-3 nos de nuevos datos que nos permitan entender mejor el origen de las eyecciones de masa coronal (CME), que pueden perjudicar el funcionamiento de los satélites y las redes eléctricas de la Tierra. La misión también medirá la irradiancia solar total, lo que permitirá seguir los cambios en la producción de energía del Sol que pueden influir en el clima de la Tierra.

Además, está sirviendo como plataforma de pruebas para los sistemas de navegación y posicionamiento que monta, que podrán ser incorporados en futuras misiones.

Compartir en Flipboard Publicar
PUBLICIDAD


Por @Wicho

Lanzada el 10 de febrero de 2020, la sonda Solar Orbiter de la Agencia Espacial Europea (ESA) ha hecho ya varios sobrevuelos de Venus con el objetivo de ir dejando el plano de la eclíptica –aquel en el que están los planetas– y ponerse en una órbita inclinada. Eso le ha permitido obtener las primeras imágenes del polo sur del Sol que hayamos visto jamás.

En el vídeo de arriba se puede comparar la vista de Sol que tenemos nosotros, en gris, con la que tiene ahora la Solar Orbiter, en amarillo, desde su órbita inclinada 17 grados respecto a la eclíptica. La sonda alcanzó esa inclinación el pasado mes de febrero, y la ESA espera que para octubre tengamos las correspondientes primeras imágenes del polo norte de nuestra estrella.

La descripción
Estas imágenes muestran la vista del polo sur del Sol captada por los distintos instrumentos de la Solar Orbiter durante los días 16 y 17 de marzo de 2025, desde un ángulo de visión de unos 15° por debajo del ecuador solar, aún camino de conseguir los 17° – ESA & NASA/Solar Orbiter/PHI, EUI and SPICE Teams

El objetivo de la misión es estudiar cómo el Sol genera y «controla» la heliosfera, esa enorme burbuja de partículas que flotan alrededor de él y que el viento solar lanza hacia el sistema solar y que tanto influye en el tiempo espacial.

Para ello lleva a bordo diez instrumentos diseñados para observar la superficie del Sol y estudiar los cambios que se producen en el viento solar. Ocho de los instrumentos son de la ESA; los otros dos los proporcionó la NASA en mejores tiempos para la ciencia en los Estados Unidos.

La descripción
Ubicación de los instrumentos de la Solar Orbiter – ESA

La misión tiene cuatro áreas principales de investigación:

  • Viento solar: ¿Qué impulsa el viento solar y la aceleración de las partículas del viento solar?
  • Regiones polares: ¿Qué ocurre en las regiones polares cuando el campo magnético solar invierte su polaridad?
  • El campo magnético: ¿Cómo se genera el campo magnético dentro del Sol y cómo se propaga a través de la atmósfera del Sol y hacia el espacio?
  • El clima espacial: ¿Cómo impactan en el Sistema Solar eventos repentinos como llamaradas y eyecciones de masa coronal? ¿Cómo producen las erupciones solares las partículas energéticas que llevan a un clima espacial extremo en la Tierra?

Y el poder ver los dos polos del Sol ayudará sin duda a entender nuestro astro como nunca antes.

Relacionado,

Compartir en Flipboard Publicar
PUBLICIDAD


Por @Wicho

Cartel del eventoYa tenemos programa provisional de Naukas Bilbao 15º aniversario. Lo que viene siendo Naukas Bilbao 2025, para no liarnos. Se celebra de viernes a domingo, en concreto los días 19, 20 y 21 de septiembre en el Palacio Euskalduna.

Los dos primeros días son los dedicados a Naukas Bilbao 2025 propiamente dicho, con cerca de 60 charlas de 10 minutos, aunque este año se da el extraño caso de que hay lo que parece ser una charla de 40 minutos dividida en cuatro actos de diez que se podrán ver de forma no consecutiva. Pero en cualquier caso si una te aburre o no te interesa no tienes más que esperar unos diez minutos, y listo.

Mi charla de este año se titula El culebrón de decidir cuál fue el primer ordenador. Con malos rollos, celos, robos de ideas y atribuciones, y claro, un montón de pasta por medio. Y este año no me toca hablar después de ninguna astronauta. Sí, soy el pringado que el año pasado habló después de Sara García Alonso.

El domingo 21 tendrá lugar Naukas KIDS, una mañana dedicada a los más pequeños.

Como es tradición la entrada es libre y gratuita hasta completar aforo.

Naukas Bilbao es una iniciativa de la plataforma de divulgación científica Naukas y la Cátedra de Cultura Científica de la UPV/EHU. Patrocinan Ayuntamiento de Bilbao, Departamento de Ciencia, Universidades e Innovación del Gobierno Vasco, DIPC, Metro Bilbao, Euskampus y EiTB.

Compartir en Flipboard Publicar
PUBLICIDAD